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1 Find and simplify the first three terms in the expansion of (2 − 3x)6 in ascending powers of x. [4]

2 A sequence u1, u2, u3, . . . is defined by

u
1
= 3 and u

n+1
= 1 − 1

un

for n ≥ 1.

(i) Write down the values of u2, u3 and u4. [3]

(ii) Describe the behaviour of the sequence. [1]

3

A B

O

8 cm

48 cm
2

The diagram shows a sector AOB of a circle with centre O and radius 8 cm. The area of the sector
is 48 cm2.

(i) Find angle AOB, giving your answer in radians. [2]

(ii) Find the area of the segment bounded by the arc AB and the chord AB. [3]

4 The cubic polynomial ax3 − 4x2 − 7ax + 12 is denoted by f(x).
(i) Given that (x − 3) is a factor of f(x), find the value of the constant a. [3]

(ii) Using this value of a, find the remainder when f(x) is divided by (x + 2). [2]
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The diagram shows the curve y = 3 + √
x + 2.

The shaded region is bounded by the curve, the y-axis, and two lines parallel to the x-axis which meet
the curve where x = 2 and x = 14.

(i) Show that the area of the shaded region is given by

� 7

5
(y2 − 6y + 7) dy. [3]

(ii) Hence find the exact area of the shaded region. [4]

6
N

N
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15 km

27 km

110°

30°

In the diagram, a lifeboat station is at point A. A distress call is received and the lifeboat travels 15 km
on a bearing of 030◦ to point B. A second call is received and the lifeboat then travels 27 km on a
bearing of 110◦ to arrive at point C. The lifeboat then travels back to the station at A.

(i) Show that angle ABC is 100◦. [1]

(ii) Find the distance that the lifeboat has to travel to get from C back to A. [2]

(iii) Find the bearing on which the lifeboat has to travel to get from C to A. [4]

7 (a) Find � x3(x2 − x + 5) dx. [4]

(b) (i) Find � 18x−4 dx. [2]

(ii) Hence evaluate � ∞
2

18x−4 dx. [2]
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8 (i) Sketch the curve y = 2 × 3x, stating the coordinates of any intersections with the axes. [3]

(ii) The curve y = 2 × 3x intersects the curve y = 8x at the point P. Show that the x-coordinate of P
may be written as

1
3 − log2 3

. [5]

9 (a) (i) Show that the equation

2 sin x tan x − 5 = cos x

can be expressed in the form

3 cos2 x + 5 cos x − 2 = 0. [3]
(ii) Hence solve the equation

2 sin x tan x − 5 = cos x,

giving all values of x, in radians, for 0 ≤ x ≤ 2π. [4]

(b) Use the trapezium rule, with four strips each of width 0.25, to find an approximate value for

� 1

0
cos x dx,

where x is in radians. Give your answer correct to 3 significant figures. [4]

10 Jamie is training for a triathlon, which involves swimming, running and cycling.

• On Day 1, he swims 2 km and then swims the same distance on each subsequent day.

• On Day 1, he runs 2 km and, on each subsequent day, he runs 0.5 km further than on the
previous day. (Thus he runs 2.5 km on Day 2, 3 km on Day 3, and so on.)

• On Day 1 he cycles 2 km and, on each subsequent day, he cycles a distance 10% further
than on the previous day.

(i) Find how far Jamie runs on Day 15. [2]

(ii) Verify that the distance cycled in a day first exceeds 12 km on Day 20. [3]

(iii) Find the day on which the total distance cycled, up to and including that day, first exceeds 200 km.
[4]

(iv) Find the total distance travelled, by swimming, running and cycling, up to and including Day 30.
[4]
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4722 Core Mathematics 2  

1  (2 – 3x)6 = 26 + 6.25.(-3x) + 15.24.(-3x)2 M1 Attempt (at least) first two terms - product of  
    binomial coefficient and powers of 2 and (-

)3x 
                 = 64 – 576x + 2160x2 A1 Obtain 64 – 576x 
   M1 Attempt third term - binomial coefficient 

and powers of 2 and (-)3x 
   A1 Obtain 2160x2 
 OR 
   M1 Attempt expansion involving all 6 brackets 
   A1 Obtain 64 
   A1 Obtain – 576x 
   A1 Obtain 2160x2 
 
 SR if the expansion is attempted in descending order, and the required terms are never seen, then B1 B1 B1 for 

4860x4, -2916x5, 729x6 
     4   
 
2 (i) u2 = 2/3 B1 Obtain correct u2 

   u3 = -1/2     B1√ Obtain correct u3 from their u2 

   u4 = 3    B1√ Obtain correct u4 from their u3 

       3  
 (ii) sequence is periodic / cyclic / repeating B1 Any equivalent comment 
     1 
 
3 (i) ½ × 82 × θ = 48 M1 State or imply  (½) 82θ = 48 
  Hence θ = 1.5 radians A1 Obtain θ = 1.5 (or 0.477π), or equiv 
     2  
 (ii) area = 48 – ½ × 82 × sin 1.5 M1* Attempt area of Δ using (½) 82sin θ 
          = 48 – 31.9 M1d* Attempt 48 – area of Δ 
          = 16.1 A1 Obtain 16.1 cm2 

     3 
 
4 (i) f(3) = 27a – 36 – 21a + 12 = 0  M1* Attempt f(3)  
           6a = 24 M1d* Equate attempt at f(3) to 0 and attempt to solve 
             a = 4 A1  Obtain a = 4 
 OR 
   M1* Attempt complete division / matching coeffs 
   M1d* Equate remainder to 0 
   A1 Obtain a = 4 
     3 
 (ii) f(-2) = -32 – 16 + 56 + 12 M1 Attempt f(-2)     
           = 20 A1√ Obtain 20 (or 6a – 4, following their a) 
     2 
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5 (i)  =  B1 Show x = yyxd∫ yy d)2)3(( 2∫ −− 2 – 6y + 7 convincingly 

              =    A.G. B1 State or imply that required area =  yyy d)76( 2∫ +− ∫ yxd

                 5)22(3 =++ ,  7)214(3 =++  B1 Use x = 2, 14 to show new limits of y = 5, 7 
     3  

 (ii) [ ]7

5
23

3
1 73 yyy +−  M1 Integration attempt, with at least one 

term 
  = (343/3 – 147 + 49) – ( 125/3 – 75 + 35)    correct    
   A1 All three terms correct  
  = 161/3 – 12/3 M1 Attempt F(7) – F(5) 
  = 14 2/3 A1 Obtain 14 2/3, or exact equiv 
     4  
 
 
6 (i) ABC = 360 – (150 + 110) = 100o  A.G.  B1  Show convincingly that angle ABC  is 100o 

       1 
 (ii)   M1  Attempt use of correct cosine rule 0222 100cos271522715 ×××−+=CA
          = 1094.655…      
     CA = 33.1    A1  Obtain 33.1 km 
        2 
 (iii) 

1.33
100sin

15
sin =C         or  

1.33
100sin

27
sin =A         M1  Attempt use of sine rule to find angle C or A  

        (or equiv using cosine rule) 
        A1√  Correct unsimplified eqn, following their CA 
  C = 26.5o                              A = 53.5o  A1  Obtain C = 26.5o or A = 53.5o (allow 53.4o) 
  Hence bearing is 263o  A1√  Obtain 263 or 264 (or 290o – their angle C /  
       210 + their angle A) 
       4 
 

7 (a)    M1  Expand brackets and attempt integration, or  xxxx d)5( 345∫ +−

        other valid integration attempt 
   = 4

4
55

5
16

6
1 xxx +−  (+ c)  A1  Obtain at least one correct term 

      A1  Obtain a fully correct expression 
      B1  For + c, and no or dx  (can be given in  ∫
        (b)(i) if not given here) 
        4 
 (b) (i)  -6x-3 (+c)  M1  Obtain integral of the form kx-3 

      A1  Obtain  -6x-3 (+c) 
        2 

      (ii)    [   B1* State or imply that F(∞) = 0 (for kx]∞−− 2
36x n, n  -1) 

                = ¾   B1d*  Obtain ¾ (or equiv) 
        2 
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8 (i)  M1 Attempt sketch of exponential graph (1st quad) 
    - if seen in 2nd quad must be approx correct 
   A1 Correct graph in both quadrants 
   B1 State or imply (0, 2) only 
     3 
 (ii) 8x

 = 2 x 3x   
  log 2 8x = log2 (2 x 3x) M1 Form equation in x and take logs (to any  
    consistent base, or no base) – could use log 8 
  xlog 2 8 = log 2 2 + xlog 2 3  M1 Use log ab = b log a 
   M1 Use log ab  = log a + log b ,or equiv with log a/b 
  3x = 1 + xlog 2 3 M1 Use log 2 8 = 3 
  x (3 – log 2 3) = 1,   hence x = 

3log3
1

2−
   A.G. A1 Show given answer correctly  

 OR 8x
 = 2 x 3x       

  

  23x = 2 x 3x M1 Use 8x = 23x 
  2(3x-1) = 3x M1 Attempt to rearrange equation to 2k = 3x 
  log 2 2(3x-1) = log 2 3x M1 Take logs (to any base) 
  (3x – 1)log 2 2 = x log 2 3 M1 Use log ab = b log a 
  x (3 – log 2 3) = 1,   hence x = 

3log3
1

2−
   A.G. A1 Show given answer correctly 

     5 
 
 
9 (a) (i) 2sinx.sinx –    M   Use tanx ≡  5 = cosx 1 sinx 
                           cosx                     cosx 
  2sin2x – 5cosx = cos2x     
        2 – 2cos2x – 5cosx = cos2x            M1  Use sin2x ≡ 1 – cos2x 
   3cos2x + 5cosx – 2 = 0  A1  Show given equation convincingly 
         3 
 (ii) (3cosx – 1)(cosx + 2) = 0  M1  Attempt to solve quadratic in cosx 
   cosx = 1/3  M1   Attempt to find x from root(s) of quadratic  
   x = 1.23 rad  A1   Obtain 1.23 rad or 70.5o 
   x = 5.05 rad  A1√  Obtain 5.05 rad or 289o (or 2π / 360o - their  
         solution) 
         SR:  B1 B1 for answer(s) only 
         4 
 (b) 0.5x0.25x{cos0+2(cos0.25+cos0.5+cos0.75)+cos1}  M1  Attempt y-coords for at least 4 of the correct 5  
         x-coords 
       M1  Use correct trapezium rule, any h, for their y 

values to find area between  x = 0 and x = 1 
       M1  Correct h (soi) for their y values 
   ≈ 0.837   A1  Obtain 0.837 
         4 
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10 (i) u15 = 2 + 14 x 0.5  M1  Attempt use of a + (n – 1)d 
        = 9 km   A1  Obtain 9 km  
        2 
 (ii) u20 = 2 x 1.119 = 12.2  B1  State, or imply, r = 1.1 
      M1   Attempt u20 , using arn-1 
  u19 = 2 x 1.118 = 11.1  A1  Obtain u20 = 12.2, and obtain  u19 = 11.1 
         
 OR  
      B1  State, or imply, r = 1.1 
      M1  Attempt to solve arn-1 = 12 
      A1  Obtain n = 20 (allow n ≥ 20) 
        3 
 (iii) 200

)11.1(
)11.1(2 >

−
−n   B1  State or imply SN = 

)11.1(
)11.1(2

−
−n   

  1.1n >11  M1  Link (any sign) their attempt at SN  (of a GP)  
        to 200 and attempt to solve 
  1.1log

11log>n   A1  Obtain 26, or 25.2 or better  

  n > 25.2        ie Day 26  A1  Conclude n = 26 only, or equiv eg Day 26 
        4 
 (iv) swum = 2 x 30 = 60 km  B1  Obtain 60 km, or 2 x 30km 
  run = ½ x 30 x (4 + 29 x 0.5)  M1  Attempt sum of AP, d = 0.5, a = 2, n = 30 
         = 277.5 km  
  cycle = 

)11.1(
)11.1(2 30

−
−   M1  Attempt sum of GP, r = 1.1, a = 2, n = 30 

   = 329.0 km  
  total = 666 km   A1  Obtain 666 or 667 km  
        4 
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