

4722/01

ADVANCED SUBSIDIARY GCE MATHEMATICS

Core Mathematics 2

THURSDAY 15 MAY 2008

Morning Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

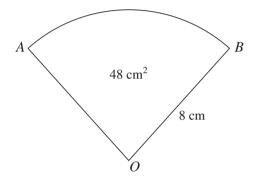
INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

This document consists of 4 printed pages.

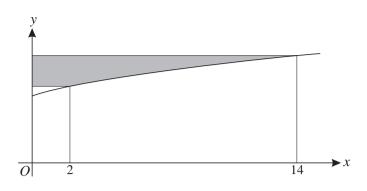
1 Find and simplify the first three terms in the expansion of $(2 - 3x)^6$ in ascending powers of x. [4]

2 A sequence u_1, u_2, u_3, \ldots is defined by


$$u_1 = 3$$
 and $u_{n+1} = 1 - \frac{1}{u_n}$ for $n \ge 1$.

(i) Write down the values of u_2 , u_3 and u_4 . [3]

[1]


(ii) Describe the behaviour of the sequence.

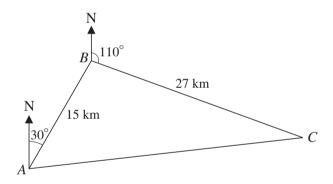
The diagram shows a sector AOB of a circle with centre O and radius 8 cm. The area of the sector is 48 cm^2 .

- (i) Find angle *AOB*, giving your answer in radians. [2]
- (ii) Find the area of the segment bounded by the arc *AB* and the chord *AB*. [3]
- 4 The cubic polynomial $ax^3 4x^2 7ax + 12$ is denoted by f(x).
 - (i) Given that (x 3) is a factor of f(x), find the value of the constant *a*. [3]
 - (ii) Using this value of a, find the remainder when f(x) is divided by (x + 2). [2]

The diagram shows the curve $y = 3 + \sqrt{x+2}$.

The shaded region is bounded by the curve, the *y*-axis, and two lines parallel to the *x*-axis which meet the curve where x = 2 and x = 14.

(i) Show that the area of the shaded region is given by


$$\int_{5}^{7} (y^2 - 6y + 7) \, \mathrm{d}y.$$
 [3]

(ii) Hence find the exact area of the shaded region.

[4]

5

In the diagram, a lifeboat station is at point A. A distress call is received and the lifeboat travels 15 km on a bearing of 030° to point B. A second call is received and the lifeboat then travels 27 km on a bearing of 110° to arrive at point C. The lifeboat then travels back to the station at A.

- (i) Show that angle ABC is 100° . [1]
- (ii) Find the distance that the lifeboat has to travel to get from *C* back to *A*. [2]
- (iii) Find the bearing on which the lifeboat has to travel to get from C to A. [4]

7 (a) Find
$$\int x^3(x^2 - x + 5) dx$$
. [4]

(b) (i) Find
$$\int 18x^{-4} dx$$
. [2]

(ii) Hence evaluate
$$\int_{2}^{\infty} 18x^{-4} dx$$
. [2]

[Turn over

- 8 (i) Sketch the curve $y = 2 \times 3^x$, stating the coordinates of any intersections with the axes. [3]
 - (ii) The curve $y = 2 \times 3^x$ intersects the curve $y = 8^x$ at the point *P*. Show that the *x*-coordinate of *P* may be written as

$$\frac{1}{3 - \log_2 3}.$$
 [5]

9 (a) (i) Show that the equation

$$2\sin x \tan x - 5 = \cos x$$

can be expressed in the form

$$3\cos^2 x + 5\cos x - 2 = 0.$$
 [3]

[4]

(ii) Hence solve the equation

$$2\sin x \tan x - 5 = \cos x,$$

giving all values of x, in radians, for $0 \le x \le 2\pi$.

(b) Use the trapezium rule, with four strips each of width 0.25, to find an approximate value for

$$\int_0^1 \cos x \, \mathrm{d}x,$$

where *x* is in radians. Give your answer correct to 3 significant figures. [4]

10 Jamie is training for a triathlon, which involves swimming, running and cycling.

- On Day 1, he swims 2 km and then swims the same distance on each subsequent day.
- On Day 1, he runs 2 km and, on each subsequent day, he runs 0.5 km further than on the previous day. (Thus he runs 2.5 km on Day 2, 3 km on Day 3, and so on.)
- On Day 1 he cycles 2 km and, on each subsequent day, he cycles a distance 10% further than on the previous day.

(i) Find how far Jamie runs on Day 15.				[2]	
		1 6	1 101		[2]

- (ii) Verify that the distance cycled in a day first exceeds 12 km on Day 20. [3]
- (iii) Find the day on which the total distance cycled, up to and including that day, first exceeds 200 km. [4]
- (iv) Find the total distance travelled, by swimming, running and cycling, up to and including Day 30. [4]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

4722 Core Mathematics 2

1)2.	$(2-3x)^6 = 2^6 + 6.2^5 \cdot (-3x) + 15.2^4 \cdot (-3x)^2$	M1	Attempt (at least) first two terms - product of binomial coefficient and powers of 2 and (-
)3 <i>x</i>	$= 64 - 576x + 2160x^2$	A1 M1	Obtain $64 - 576x$ Attempt third term - binomial coefficient and powers of 2 and (-) $3x$
	OR		A1	Obtain $2160x^2$
			M1 A1	Attempt expansion involving all 6 brackets Obtain 64
			A1	Obtain – 576x
			A1	Obtain $2160x^2$
	SR	if the expansion is attempted in descending order, and the $4860x^4$, $-2916x^5$, $729x^6$	require	d terms are never seen, then B1 B1 B1 for
			4	
2	(i)	$u_2 = \frac{2}{3}$	B 1	Obtain correct u_2
2	(i)	$u_3 = -1/2$		B1 $$ Obtain correct u_3 from their u_2
2	(i)		B1 B1√ 3	
2	(i) (ii)	$u_3 = -1/2$	B1√ 3 B1	B1 $$ Obtain correct u_3 from their u_2
2		$u_3 = {}^{-1}/_2$ $u_4 = 3$	B1√ _3	B1 $$ Obtain correct u_3 from their u_2 Obtain correct u_4 from their u_3
2		$u_3 = {}^{-1}/_2$ $u_4 = 3$	B1√ 3 B1	B1 $$ Obtain correct u_3 from their u_2 Obtain correct u_4 from their u_3
	(ii)	$u_3 = \frac{1}{2}$ $u_4 = 3$ sequence is periodic / cyclic / repeating	B1√ 3 B1 1 M1 <u>A1</u>	B1 $$ Obtain correct u_3 from their u_2 Obtain correct u_4 from their u_3 Any equivalent comment
	(ii)	$u_{3} = \frac{1}{2}$ $u_{4} = 3$ sequence is periodic / cyclic / repeating $\frac{1}{2} \times 8^{2} \times \theta = 48$ Hence $\theta = 1.5$ radians area = $48 - \frac{1}{2} \times 8^{2} \times \sin 1.5$	$\begin{array}{c} B1 \\ \hline 3 \\ B1 \\ \hline 1 \\ \hline M1 \\ A1 \\ \hline 2 \\ M1^* \end{array}$	B1 $$ Obtain correct u_3 from their u_2 Obtain correct u_4 from their u_3 Any equivalent comment State or imply ($\frac{1}{2}$) $8^2\theta = 48$ Obtain $\theta = 1.5$ (or 0.477π), or equiv Attempt area of Δ using ($\frac{1}{2}$) $8^2 \sin \theta$
	(ii) (i)	$u_{3} = \frac{-1}{2}$ $u_{4} = 3$ sequence is periodic / cyclic / repeating $\frac{1}{2} \times 8^{2} \times \theta = 48$ Hence $\theta = 1.5$ radians area = $48 - \frac{1}{2} \times 8^{2} \times \sin 1.5$ $= 48 - 31.9$	B1√ 3 B1 1 M1 A1 2 M1* M1d*	B1 $$ Obtain correct u_3 from their u_2 Obtain correct u_4 from their u_3 Any equivalent comment State or imply $(\frac{1}{2}) 8^2 \theta = 48$ Obtain $\theta = 1.5$ (or 0.477π), or equiv Attempt area of Δ using $(\frac{1}{2}) 8^2 \sin \theta$ Attempt 48 – area of Δ
	(ii) (i)	$u_{3} = \frac{1}{2}$ $u_{4} = 3$ sequence is periodic / cyclic / repeating $\frac{1}{2} \times 8^{2} \times \theta = 48$ Hence $\theta = 1.5$ radians area = $48 - \frac{1}{2} \times 8^{2} \times \sin 1.5$	$\begin{array}{c} B1 \\ \hline 3 \\ B1 \\ \hline 1 \\ \hline M1 \\ A1 \\ \hline 2 \\ M1^* \end{array}$	B1 $$ Obtain correct u_3 from their u_2 Obtain correct u_4 from their u_3 Any equivalent comment State or imply ($\frac{1}{2}$) $8^2\theta = 48$ Obtain $\theta = 1.5$ (or 0.477π), or equiv Attempt area of Δ using ($\frac{1}{2}$) $8^2 \sin \theta$

-			
	6a = 24	M1d*	Equate attempt at $f(3)$ to 0 and attempt to solve
	a = 4	A1	Obtain $a = 4$
	OR		
		M1*	Attempt complete division / matching coeffs
		M1d*	Equate remainder to 0
		A1	Obtain $a = 4$
		3	
	(ii) $f(-2) = -32 - 16 + 56 + 12$	M1	Attempt f(-2)
	= 20	A1√	Obtain 20 (or $6a - 4$, following their <i>a</i>)
		2	

4722

Mark Scheme

June 2008

5 (i)	$\int x dy = \int ((y-3)^2 - 2) dy$	B1	Show $x = y^2 - 6y + 7$ convincingly
	$=\int (y^2 - 6y + 7) dy$ A.G.	B1	State or imply that required area = $\int x dy$
	$3 + \sqrt{(2+2)} = 5$, $3 + \sqrt{(14+2)} = 7$	B1	Use $x = 2$, 14 to show new limits of $y = 5$, 7
(ii)	$\left[\frac{1}{3}y^3 - 3y^2 + 7y\right]_5^7$	M1	Integration attempt, with at least one
term	$= ({}^{343}/_3 - 147 + 49) - ({}^{125}/_3 - 75 + 35)$ = $16^1/_3 - 1^2/_3$ = $14^2/_3$	A1 M1 A1 4	correct All three terms correct Attempt $F(7) - F(5)$ Obtain 14 ² / ₃ , or exact equiv
6 (i)	$ABC = 360 - (150 + 110) = 100^{\circ}$ A.G.	B1	Show convincingly that angle ABC is 100°
(ii)	$CA^{2} = 15^{2} + 27^{2} - 2 \times 15 \times 27 \times \cos 100^{0}$ = 1094.655	<u>M1</u>	Attempt use of correct cosine rule
	CA = 33.1	A1	Obtain 33.1 km
(iii)	$\frac{\sin C}{15} = \frac{\sin 100}{33.1} \qquad \text{or} \qquad \frac{\sin A}{27} = \frac{\sin 100}{33.1}$	M1	Attempt use of sine rule to find angle C or A
	$C = 26.5^{\circ}$ $A = 53.5^{\circ}$ Hence bearing is 263°	A1√ A1 A1√ 4	(or equiv using cosine rule) Correct unsimplified eqn, following their C Obtain $C = 26.5^{\circ}$ or $A = 53.5^{\circ}$ (allow 53.4°) Obtain 263 or 264 (or 290° – their angle C 210 + their angle A)
7 (a)	$\int (x^5 - x^4 + 5x^3) \mathrm{d}x$	M1	Expand brackets and attempt integration, or
	$= \frac{1}{6}x^6 - \frac{1}{5}x^5 + \frac{5}{4}x^4 (+c)$	A1	other valid integration attempt Obtain at least one correct term
	$= \frac{1}{6}x + \frac{1}{5}x + \frac{1}{4}x + \frac{1}{6}x + \frac{1}{6}$	A1 A1	Obtain a fully correct expression
		B1	For $+c$, and no $\int or dx$ (can be given in
		4	(b)(i) if not given here)
(b)	(i) $-6x^{-3}(+c)$	M1 A1 2	Obtain integral of the form kx^{-3} Obtain $-6x^{-3}$ (+ <i>c</i>)
	(ii) $\left[-6x^{-3}\right]_{2}^{\infty}$ = $\frac{3}{4}$	B1* B1d* 2	State or imply that $F(\infty) = 0$ (for kx^n , $n - 1$) Obtain ³ / ₄ (or equiv)

8 (i)		M1 A1 B1 3	Attempt sketch of exponential graph (1 st quad) - if seen in 2 nd quad must be approx correct Correct graph in both quadrants State or imply (0, 2) only
(ii)	$8^{x} = 2 \times 3^{x}$ $\log_{2} 8^{x} = \log_{2} (2 \times 3^{x})$ $x \log_{2} 8 = \log_{2} 2 + x \log_{2} 3$	M1 M1 M1	Form equation in x and take logs (to any consistent base, or no base) – could use log $_8$ Use log $a^b = b \log a$ Use log $ab = \log a + \log b$, or equiv with $\log a/b$
	$3x = 1 + x \log_2 3$ $x (3 - \log_2 3) = 1$, hence $x = \frac{1}{3 - \log_2 3}$ A.G.	M1 A1	Use $\log_2 8 = 3$ Show given answer correctly
0ĸ	$8^{x} = 2 \times 3^{x}$ $2^{3x} = 2 \times 3^{x}$ $2^{(3x-1)} = 3^{x}$ $\log_{2} 2^{(3x-1)} = \log_{2} 3^{x}$ $(3x-1)\log_{2} 2 = x \log_{2} 3$ $x (3 - \log_{2} 3) = 1, \text{ hence } x = \frac{1}{3 - \log_{2} 3} \text{ A.G.}$	M1 M1 M1 A1 5	Use $8^x = 2^{3x}$ Attempt to rearrange equation to $2^k = 3^x$ Take logs (to any base) Use log $a^b = b \log a$ Show given answer correctly
9 (a)	(i) $2\sin x \cdot \frac{\sin x}{\cos x} - 5 = \cos x$ $2\sin^2 x - 5\cos x = \cos^2 x$	M1	Use $\tan x \equiv \frac{\sin x}{\cos x}$
	$2-2\cos^2 x - 5\cos x = \cos^2 x$ $3\cos^2 x + 5\cos x - 2 = 0$	M1 A1 3	Use $\sin^2 x \equiv 1 - \cos^2 x$ Show given equation convincingly
(ii)	$(3\cos x - 1)(\cos x + 2) = 0$ $\cos x = \frac{1}{3}$ x = 1.23 rad x = 5.05 rad	M1 M1 A1 A1√	Attempt to solve quadratic in cosx Attempt to find x from root(s) of quadratic Obtain 1.23 rad or 70.5° Obtain 5.05 rad or 289° (or $2\pi / 360^{\circ}$ - their solution) SR: B1 B1 for answer(s) only
(b)	0.5x0.25x{cos0+2(cos0.25+cos0.5+cos0.75)+cos1}	4 M1	Attempt <i>y</i> -coords for at least 4 of the correct 5 <i>x</i> -coords
		M1	Use correct trapezium rule, any <i>h</i> , for their <i>y</i> values to find area between $x = 0$ and $x = 1$
	≈ 0.837	M1 A1 4	Correct <i>h</i> (soi) for their <i>y</i> values Obtain 0.837

10 (i)	$u_{15} = 2 + 14 \ge 0.5$	M1	Attempt use of $a + (n-1)d$
	= 9 km	A1	Obtain 9 km
		2	
(ii)	$u_{20} = 2 \ge 1.1^{19} = 12.2$	B1	State, or imply, $r = 1.1$
		M1	Attempt u_{20} , using ar^{n-1}
	$u_{19} = 2 \ge 1.1^{18} = 11.1$	A1	Obtain $u_{20} = 12.2$, and obtain $u_{19} = 11.1$
OR			
		B 1	State, or imply, $r = 1.1$
		M1	Attempt to solve $ar^{n-1} = 12$
		A1	Obtain $n = 20$ (allow $n \ge 20$)
		3	
(iii)	$2(1.1^n - 1) > 200$	B1	State or imply $S_N = \frac{2(1.1^n - 1)}{(1.1 - 1)}$
	$\frac{2(1.1^n - 1)}{(1.1 - 1)} > 200$		(1.1-1)
	$1.1^n > 11$	M1	Link (any sign) their attempt at S_N (of a GP)
			to 200 and attempt to solve
	$n > \frac{\log 11}{\log 1.1}$	A1	Obtain 26, or 25.2 or better
	n > 25.2 ie Day 26	A1	Conclude $n = 26$ only, or equiv eg Day 26
	n 25.2 10 Day 20	4	Conclude n 20 only, of equiver buy 20
(iv)	$swum = 2 \times 30 = 60 \text{ km}$	B1	Obtain 60 km, or 2 x 30km
	$run = \frac{1}{2} \times 30 \times (4 + 29 \times 0.5)$	M1	Attempt sum of AP, $d = 0.5$, $a = 2$, $n = 30$
	= 277.5 km		
	$cycle = 2(1.1^{30} - 1)$	M1	Attempt sum of GP, $r = 1.1$, $a = 2$, $n = 30$
	(1.1-1)		1
	= 329.0 km		
	total = 666 km	A1	Obtain 666 or 667 km
		4	